If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-24=0
a = 1; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·1·(-24)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*1}=\frac{0-4\sqrt{6}}{2} =-\frac{4\sqrt{6}}{2} =-2\sqrt{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*1}=\frac{0+4\sqrt{6}}{2} =\frac{4\sqrt{6}}{2} =2\sqrt{6} $
| -24=5v-4 | | 5=x/1000000 | | (2x)(2x)(x)=180 | | f/7-20=-26 | | x/(2065.39+x)=4/100 | | 2x2−18x+36=0 | | g/4+13=27 | | 15*(2x+11)=285 | | 3r−7=2 | | 4+5v=-31 | | -6a=-9a-18 | | 3t+7t=-3” | | 3x^2-22x+12=0 | | 9+9q=54 | | x=1/4-3/5 | | 10/3=2v | | (3x+3)^2=81 | | a/4+8=-36 | | y=3+y^2 | | 255.158.105=x | | 140.75(8b+4)−1=4b+14 | | x2+6=10 | | -2/3(9w-21)=20 | | 13x-2(x+4)=8x+J1 | | -1.3+4.6=0.3+4x | | z(z-15)=0 | | -3w+6=8w+-2w | | 13x-2(x+4)=8x* | | Z-4/6=z/2 | | 0=x(x-6) | | 9•(x+6)=72 | | 16t–2(2t+5)=14 |